Learning Appearance Based Models: Hierarchical Mixtures of Experts Approach based on Generalized Second Moments

نویسندگان

  • Christoph Bregler
  • Jitendra Malik
چکیده

This paper describes a new technique for object recognition based on learning appearance models. The image is decomposed into local regions which are described by a new texture representation derived from the output of multiscale, multiorientation filter banks. We call this representation “Generalized Second Moments” as it can be viewed as a generalization of the windowed second moment matrix representation used by Garding & Lindeberg. Classcharacteristic local texture features and their global composition is learned by a hierarchical mixture of experts architecture (HME by Jordan & Jacobs). The technique is applied to a vehicle database consisting of 5 general car categories (Sedan, Van with back-doors, Van without back-doors, old Sedan, and Volkswagen Bug). This is a difficult problem with considerable in-class variation. The new technique has a 6:5% misclassification rate, compared to eigen-images which give 17:4% misclassification rate, and nearest neighbors which give 15:7% misclassification rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Appearance Based Models: Mixtures of Second Moment Experts

This paper describes a new technique for object recognition based on learning appearance models. The image is decomposed into local regions which are described by a new texture representation called “Generalized Second Moments” that are derived from the output of multiscale, multiorientation filter banks. Class-characteristic local texture features and their global composition is learned by a h...

متن کامل

Higher moments portfolio Optimization with unequal weights based on Generalized Capital Asset pricing model with independent and identically asymmetric Power Distribution

The main criterion in investment decisions is to maximize the investors utility. Traditional capital asset pricing models cannot be used when asset returns do not follow a normal distribution. For this reason, we use capital asset pricing model with independent and identically asymmetric power distributed (CAPM-IIAPD) and capital asset pricing model with asymmetric independent and identically a...

متن کامل

Bayesian Inference in Mixtures-of-Experts and Hierarchical Mixtures-of-Experts Models With an Application to Speech Recognition

Machine classi cation of acoustic waveforms as speech events is often di cult due to context-dependencies. A vowel recognition task with multiple speakers is studied in this paper via the use of a class of modular and hierarchical systems referred to as mixtures-of-experts and hierarchical mixtures-of-experts models. The statistical model underlying the systems is a mixture model in which both ...

متن کامل

On the asymptotic normality of hierarchical mixtures-of-experts for generalized linear models

| In the class of hierarchical mixtures-of-experts (HME) models, \experts" in the exponential family with generalized linear mean functions of the form (+ x T) are mixed, according to a set of local weights called the \gating functions" depending on the predictor x. Here () is the inverse link function. We provide regularity conditions on the experts and on the gating functions under which the ...

متن کامل

Recurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions

In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996